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Abstract

This research presents a comprehensive comparative framework for
three enhanced numerical methods for solving Fredholm Integral
Equations (FIEs): the Nystrom method improved with spline
Gaussian quadrature, the Collocation method using Mintz-
Legendre wavelet basis, and the Picard iterative scheme. A unified
experimental framework was developed in MATLAB to evaluate
the performance of these methods across a wide range of benchmark
problems, including both linear and nonlinear, well-posed and ill-
posed equations. The work aims to provide practical, empirically-
supported guidelines for selecting the optimal numerical approach
based on specific problem characteristics.

Keywords: Fredholm Integral Equations, Numerical Analysis,
Nystrom Method, Collocation Method, Picard Iteration, 111-Posed
Problems, Tikhonov Regularization, Spline Quadrature, Wavelet
Basis, Hammerstein Equation.

1. Introduction

Integral equations, characterized by the presence of an unknown
function within an integral sign, represent a cornerstone of applied
mathematics. Among them, Fredholm Integral Equations (FIES),
defined by fixed limits of integration, are of paramount importance
due to their extensive applications in diverse fields such as potential
theory [1], heat conduction [2], population dynamics [3], and
particularly in inverse problems including image reconstruction [4]
and geophysical prospecting [5]. The analytical solution of FIESs is
typically only feasible for a limited set of simple, degenerate
kernels. For the vast majority of practical problems, especially those
involving complex or non-separable kernels, numerical methods are
not merely advantageous but essential for extracting meaningful
solutions and insights [6].

A critical distinction in the study of FIEs, one that fundamentally
dictates their mathematical properties and the requisite numerical
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strategies, lies between equations of the first and second kind. The
Fredholm equation of the second kind is generally well-posed in the
sense of Hadamard [7], meaning its solution exists, is unique, and
depends continuously on the input data. This property leads to stable
numerical behavior, where small perturbations in the data result in
bounded errors in the solution. In stark contrast, the Fredholm
equation of the first kind is a classic example of an ill-posed problem
[8]. Solutions do not depend continuously on the data, leading to
extreme sensitivity to perturbations such as measurement noise or
rounding errors. This ill-posedness necessitates the application of
specialized regularization techniques to recover stable, meaningful
approximations [9].

The numerical treatment of FIEs has a rich history, with the
Nystrom [10], Collocation [11], and Picard iterative [12] schemes
representing cornerstone approaches. The Nystrom method directly
discretizes the integral using numerical quadrature. The Collocation
method projects the solution onto a finite-dimensional subspace.
The Picard method generates a sequence of functions through
successive substitution. While these methods are well-established in
classical texts [6, 13], the existing literature often treats them in
isolation or lacks a unified, rigorous framework for their
comparison. A significant gap exists in studies that simultaneously
evaluate modern enhancements of these methods—such as
advanced quadrature rules [14] and wavelet bases [15] across the
critical dimensions of accuracy, stability, and computational
efficiency for both linear and nonlinear problems.

This research is motivated by the need for a comprehensive
comparative analysis that addresses this gap. The primary objective
IS to develop a unified experimental framework to implement, test,
and compare optimized versions of the Nystrém, Collocation, and
Picard methods. The study will critically assess their performance
on a range of benchmark problems, with a particular focus on the
challenges posed by ill-posed first-kind equations and weakly
nonlinear systems. The expected outcome is a set of empirically
validated guidelines that will aid researchers and practitioners in
selecting the most efficient and robust numerical strategy tailored to
the specific properties of their FIE problem, thereby enhancing the
toolkit available to the computational science community.
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2. Theoretical Foundations

This section outlines the mathematical formulation of FIEs and the
theoretical principles underlying the numerical methods under
investigation.

2.1. Fredholm Integral Equations: Definition and Classification
The general linear Fredholm integral equation of the second kind is
defined by:

b
u(x) — AJ. K(x,t)u(t)dt = f(x), x€|a,b] (1)
a
where:
. u(x) is the unknown function to be determined,
. K(x,t) is a known kernel function, assumed to be
continuous in [a,b]x[a,b],
. f(x) is a known forcing term,
. A is a scalar parameter.

If the unknown function appears exclusively under the integral, the
equation is classified as the first kind:

b
f KCx, Ou(t)dt = £(x) @)

a
This form is inherently ill-posed and is frequently encountered in
inverse problems where one seeks to recover an internal
property u(t) from indirect measurements f(x) [8, 16].
For problems involving nonlinearity, a Hammerstein-type equation
is considered [17]:

u() = A [ K(x, )gu(®)dt = f(x) 3
where g(+) is a nonlinear function, typically assumed to satisfy a
Lipschitz condition.

2.2. The Nystrom Method with Quadrature Enhancement

The Nystrém method is a direct discretization technique that
approximates the integral term using a numerical quadrature rule
[10, 18]. Given a set of N nodes {w;}"j-1 and corresponding weights
{t;}"Nj=1 from a rule such as Gaussian quadrature, the integral is
discretized:

b N
f K(x, tu(t)dt = Z w; K(x, tj)u(tj) 4)
a =1

Substituting this approximation into the second-kind FIE and
enforcing the equation at the quadrature nodes xi=t; yields a system
of linear algebraic equations:
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N
Uu; —AZ 0)] K(xi,tj)uj = f(xi), i = 1,,N (5)
j=1

This can be written in matrix form as (I-AKW) u=f, where W is a
diagonal matrix of weights. The accuracy of this method is directly
tied to the precision of the underlying quadrature rule. This study
implements an optimized Nystrom method utilizing high-order
spline Gaussian quadrature, which has been shown to offer superior
convergence properties and stability for smooth kernels compared
to traditional polynomial-based Gaussian rules [14, 19].
2.3. The Collocation Method with Wavelet Basis
The Collocation method [20] is a projection technique where the
solution is approximated within a finite-dimensional subspace
{0k(X)}k=1 spanned by a set of basis functions [11, 20]. The
unknown function u(x) is expanded as:

N

() = ) @y i) ()

k=1

The coefficients {ax} are determined by requiring that the integral
equation is satisfied exactly at a set of collocation points {xi}"i-1.

For the second-kind equation, this leads to:
N

b
> (90 A | K@ 0$Ode = fG), =1 N ()
k=1 a
This constitutes a linear system Ca=f. The choice of basis functions
is critical for efficiency and accuracy. While polynomial bases are
common, this research employs Miintz-Legendre wavelets [15, 21].
Wavelets provide a multi-resolution analysis capability, allowing
for efficient representation of functions with localized features,
discontinuities, or singularities. The use of an operational matrix can
further simplify the computation of the integral terms, reducing the
cost of assembling the matrix C.
2.4. The Picard Iteration Method
The Picard method, or the method of successive approximations, is
an iterative technique defined by the recurrence relation [12, 22]:

U1 () = F(O) + 4[] K(x, Dy ()t (8)

Starting from an initial guess uo(x) (often uo(x)=f(x)), a sequence of
functions {un(x)} is generated. The sequence converges to the true
solution if the operator T[u]=f+AKu is a contraction on a suitable
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Banach space (e.g. L?[a,b] or C[a,b]). A sufficient condition for
convergence is ||4]-[IKlI<1, where [IK]|l is the norm of the integral
operator. This method is particularly advantageous for weakly
nonlinear FIEs of Hammerstein type, as it avoids the need to solve
large, dense nonlinear algebraic systems that arise from the direct
discretization of the Nystrom or Collocation methods [17, 23]. Its
simplicity and low computational overhead per iteration make it
attractive for problems where the contraction mapping principle
applies.

2.5. Regularization of 11l-Posed Problems

The discretization of a first-kind FIE, [K(x,t)u(t)dt=f(x), inevitably
leads to a linear system Au=f where the matrix A is severely ill-
conditioned [8, 24]. The condition number x(A) grows rapidly with
the discretization size N, making the solution highly sensitive to
noise in f. Tikhonov regularization is a cornerstone technique to
restore stability [9, 25]. It replaces the original, unstable problem
with a nearby, well-posed minimization problem:

minu{llAu-fll22+o2||Lull22} )

where o>0 is the regularization parameter and L is a regularization
matrix (often the identity matrix, I, or a discrete differential operator
to enforce smoothness). The solution is given by the regularized
normal equations:

(ATA+02LTL)u=ATf (10)

The choice of « is critical and can be determined using methods
like the L-curve criterion [26], generalized cross-validation [27], or
the discrepancy principle [9].

3. Methodology and Experimental Design

A unified computational framework was established in MATLAB
to ensure a fair and consistent comparison. The following
benchmark problems were selected to probe different aspects of
solver performance:

3.1 Benchmark 1 (Smooth Linear Second Kind):

1 5 1
u(x) — O.SJ (xt+ Du(t)dt=1+x+ i + 3 (11)
0
6 Copyright © ISTJ A ginae auball (5 gin

Al 5 sl A4 ) Alaal


http://www.doi.org/10.62341/mhks7711

International Scienceand ~ VOlume 37 aaxd) gy pll Al il

Imtrwaational beimrs mad Taviasiags demraal

e SRR I T N P

http://www.doi.org/10.62341/mhks7711

Purpose: To test high-order convergence and raw accuracy for a
well-posed problem with a known analytic solution. The smooth
kernel allows for an assessment of the theoretical advantages of
high-order quadrature and basis functions.

3.2 Benchmark 2 (I1l1-Posed First Kind):

e -1

fle’“u(t)dt = (12)
0

where the exact solution is u*(t)=1. This is tested with a noise-free
right-hand side and with 1% additive Gaussian white noise to
simulate measurement error.

Purpose: To evaluate numerical stability, the growth of the
condition number with increasing N, and the effectiveness of
Tikhonov regularization in recovering a stable solution from noisy
data.

3.3 Benchmark 3 (Weakly Nonlinear Hammerstein):
1
u(x) — 0.3f (x + Hu?(t)dt = cos(mx) (13)
0

Purpose: To assess the performance and convergence of the Picard
iteration for a canonical nonlinear problem and to compare it against
the Nystrom and Collocation methods extended to nonlinear
problems via Newton-type solvers.

The following metrics were used for a multi-faceted evaluation:
Accuracy: Quantified by the Root Mean Square Error:

Bovss = | T, (0 () = wn ()? (14)

. where M is a large number of test points.

. Convergence Rate: The empirical order of
convergence pp is estimated from the slope of the
error log(Erwms) versus log(N).

. Stability: Measured by the condition number x2(A) of the
system matrix for various N. A rapidly growing condition number
indicates ill-posedness.
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. Efficiency: Assessed via empirical runtime measurements
on a standard platform and analysis of computational complexity
(e.g., O(N®) for direct solvers of dense systems vs. O(kN?) for k
iterations of the Picard method).

4. Results and Discussion
4.1. Convergence and Accuracy for a Second-Kind Equation

Table 1: Convergence of Erms for Benchmark 1

Discretization(N) Nystrom Collocation Picard Iteration
(Spline Gauss) (Wavelet) (5 iter)

8 5.82e% 1.89e% 1.05e702

16 3.91¢ 2.45e% 1.04e2

32 6.05e"t 3.12¢8 1.04e72

64 <1.0e2 3.91e10 1.04e2

The results in Table 1 unequivocally demonstrate the superior
convergence of the optimized Nystrom method. The use of spline
Gaussian quadrature facilitates exponential (spectral) convergence,
allowing it to achieve machine precision with a moderate number of
nodes, corroborating the findings in [14]. The wavelet-based
Collocation method also exhibits high-order convergence but at a
slightly slower rate, which may be attributed to the computational
overhead of evaluating the wavelet integrals, despite the advantages
highlighted in [15, 21]. The Picard iteration, as expected, converges
rapidly to its fixed point within the first few iterations, but the error
stagnates because it is dominated by the truncation of the infinite
Liouville-Neumann series, not the discretization error. This
confirms the theoretical prediction that Picard iteration, while
simple, is not competitive for linear problems where direct
discretization methods are applicable and can achieve much higher
accuracy [12, 22].
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4.2. Stability and Regularization for a First-Kind Equation

Table 2: Condition Number and Regularization Performance for
Benchmark 2 (with 1% Noise)

N I(C;) Erus (No Reg) Oaptimal Erus (With Reg.)
16 | 2% | sate01 1e0% 1.52¢7
32 | L8 | 2i5e0 1693 2 89601
64 | 42 | 5770 12 41169

Table 2 unequivocally confirms the severe ill-posedness of the first-
kind equation, with the condition number growing exponentially
with N, a hallmark of such problems as described in [8, 24]. The
unregularized solution is completely dominated by noise and is
useless for N>32. The application of Tikhonov regularization is
essential to recover a meaningful solution, as prescribed in [9, 25].
It is observed that while the error of the regularized solution
increases with N (a phenomenon explained by the discrepancy
principle, as a finer discretization captures more high-frequency
noise), it remains bounded and physically plausible. This highlights
a critical trade-off inherent in ill-posed problems: numerical
stability must be prioritized over the theoretical accuracy achievable
with finer discretizations. The discretization level N and the
regularization parameter ao. must be chosen in concert, not
independently.

4.3. Performance on Weakly Nonlinear Problems

Table 3: Performance on Hammerstein Equation (Benchmark 3)

Method N Erms Runtime (s)
Picard Iteration - 4.88e% 0.15
Nystrom + Newton 32 2.15e°% 0.45
Collocation + Newton 32 5.21¢0® 0.62
9 Copyright © ISTJ A ginae auball (5 gin
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For this weakly nonlinear problem, the Picard iteration
demonstrates its distinct advantage, as analyzed in [17, 23]. It
converges reliably to a good approximation with very low
computational cost, as it avoids assembling and solving a large
nonlinear system. The Nystrom and Collocation methods, when
coupled with Newton's method, achieve higher accuracy but at a
significantly greater computational expense. This is due to
the O(N®) cost of solving the linear systems within each Newton
iteration. This result strongly suggests that for weakly nonlinear
problems where extreme precision is not the primary goal, the
Picard method offers an excellent balance of efficiency, robustness,
and simplicity of implementation.

5. Conclusion

This study has provided a systematic and comprehensive

comparative analysis of three principal numerical methods for

solving Fredholm Integral Equations. By implementing modern
enhancements—spline quadrature for Nystrom, wavelet bases for

Collocation, and a focused analysis of Picard iteration—and

evaluating their performance across a carefully chosen suite of

benchmark problems, clear and practical guidelines have been
established.

The key findings and recommendations are as follows:

1. For linear Fredholm equations of the second kind with
smooth kernels, the Nystrom method enhanced with high-
order quadrature (e.g., spline Gauss) is the unequivocal
champion. Its spectral convergence property, as evidenced in
Benchmark 1, allows it to achieve high accuracy with relatively
few discretization points, making it both highly accurate and
computationally efficient for this class of problems.

2. For ill-posed first-kind equations, the primary concern shifts
from accuracy to numerical stability. As demonstrated in
Benchmark 2, both the Nystrom and Collocation methods
produce severely ill-conditioned systems. The successful
application of Tikhonov regularization is mandatory to obtain
a stable, physically meaningful solution. In this context, the
choice between Nystrom and Collocation is less critical than the
careful and often problem-dependent selection of the
regularization parameter o.

3. For weakly nonlinear Hammerstein-type
equations, the Picard iterative method is highly
recommended. Its simplicity, low computational cost, and
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reliable convergence under standard contractive conditions, as
shown in Benchmark 3, make it an ideal choice, particularly for
applications where a solution of moderate accuracy is sufficient
and the overhead of a nonlinear solver is undesirable.
In summary, the optimal numerical strategy for an FIE is not
universal but is dictated by the equation's type (first/second kind),
the smoothness of its kernel, and the presence of nonlinearity. This
research provides a clear, empirically-supported decision-making
framework for practitioners facing these computational challenges.
Furthermore, this work establishes a robust baseline of performance
for classical methods, against which emerging techniques, such as
neural operators or other machine learning-based solvers [28, 29],
can be rigorously evaluated in the future.
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