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ولم التكاملية: النظرية، والتنفيذ، هإطار شامل للحل العددي لمعادلات فريد
 والتحليل المقارن 
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 ايبيل - ةنو هر ت – جامعة الزيتونة العلوم،كلية  الرياضيات،قسم 

 الملخّص
تقدم هذه الدراسة إطارًا مقارنًا شاملًا لثلاث طرائق عددية محسنة لحل معادلات فريدهولم 

بالتكامل التربيعي الغاوسي المقطع، وطريقة التكاملية، وهي: طريقة نيستروم المعززة 
ليجندر، ومخطط بيكارد التكراري. تم -التماثل باستخدام أساس الموجهات من نوع منتز

لتقييم أداء هذه الطرائق على نطاق واسع  MATLAB تطوير إطار تجريبي موحد في بيئة
محددة التحديد  من المسائل النموذجية، بما في ذلك المعادلات الخطية وغير الخطية،

وغير محددة التحديد. يهدف العمل إلى تقديم إرشادات عملية قائمة على الأدلة التجريبية 
 .لاختيار الأسلوب العددي الأمثل وفقًا لطبيعة المسألة المدروسة

معادلات فريدهولم التكاملية، التحليل العددي، طريقة نيستروم، طريقة  :الكلمات المفتاحية
بيكارد، المسائل غير محددة التحديد، تنظيم تيكونوف، التكامل التربيعي  التماثل، تكرار

 .المقطع، أساس الموجهات، معادلة هامرستانين
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Abstract 

This research presents a comprehensive comparative framework for 

three enhanced numerical methods for solving Fredholm Integral 

Equations (FIEs): the Nyström method improved with spline 

Gaussian quadrature, the Collocation method using Müntz-

Legendre wavelet basis, and the Picard iterative scheme. A unified 

experimental framework was developed in MATLAB to evaluate 

the performance of these methods across a wide range of benchmark 

problems, including both linear and nonlinear, well-posed and ill-

posed equations. The work aims to provide practical, empirically-

supported guidelines for selecting the optimal numerical approach 

based on specific problem characteristics. 

Keywords: Fredholm Integral Equations, Numerical Analysis, 

Nyström Method, Collocation Method, Picard Iteration, Ill-Posed 

Problems, Tikhonov Regularization, Spline Quadrature, Wavelet 

Basis, Hammerstein Equation. 

1. Introduction 

Integral equations, characterized by the presence of an unknown 

function within an integral sign, represent a cornerstone of applied 

mathematics. Among them, Fredholm Integral Equations (FIEs), 

defined by fixed limits of integration, are of paramount importance 

due to their extensive applications in diverse fields such as potential 

theory [1], heat conduction [2], population dynamics [3], and 

particularly in inverse problems including image reconstruction [4] 

and geophysical prospecting [5]. The analytical solution of FIEs is 

typically only feasible for a limited set of simple, degenerate 

kernels. For the vast majority of practical problems, especially those 

involving complex or non-separable kernels, numerical methods are 

not merely advantageous but essential for extracting meaningful 

solutions and insights [6]. 

A critical distinction in the study of FIEs, one that fundamentally 

dictates their mathematical properties and the requisite numerical 
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strategies, lies between equations of the first and second kind. The 

Fredholm equation of the second kind is generally well-posed in the 

sense of Hadamard [7], meaning its solution exists, is unique, and 

depends continuously on the input data. This property leads to stable 

numerical behavior, where small perturbations in the data result in 

bounded errors in the solution. In stark contrast, the Fredholm 

equation of the first kind is a classic example of an ill-posed problem 

[8]. Solutions do not depend continuously on the data, leading to 

extreme sensitivity to perturbations such as measurement noise or 

rounding errors. This ill-posedness necessitates the application of 

specialized regularization techniques to recover stable, meaningful 

approximations [9]. 

The numerical treatment of FIEs has a rich history, with the 

Nyström [10], Collocation [11], and Picard iterative [12] schemes 

representing cornerstone approaches. The Nyström method directly 

discretizes the integral using numerical quadrature. The Collocation 

method projects the solution onto a finite-dimensional subspace. 

The Picard method generates a sequence of functions through 

successive substitution. While these methods are well-established in 

classical texts [6, 13], the existing literature often treats them in 

isolation or lacks a unified, rigorous framework for their 

comparison. A significant gap exists in studies that simultaneously 

evaluate modern enhancements of these methods—such as 

advanced quadrature rules [14] and wavelet bases [15] across the 

critical dimensions of accuracy, stability, and computational 

efficiency for both linear and nonlinear problems. 

This research is motivated by the need for a comprehensive 

comparative analysis that addresses this gap. The primary objective 

is to develop a unified experimental framework to implement, test, 

and compare optimized versions of the Nyström, Collocation, and 

Picard methods. The study will critically assess their performance 

on a range of benchmark problems, with a particular focus on the 

challenges posed by ill-posed first-kind equations and weakly 

nonlinear systems. The expected outcome is a set of empirically 

validated guidelines that will aid researchers and practitioners in 

selecting the most efficient and robust numerical strategy tailored to 

the specific properties of their FIE problem, thereby enhancing the 

toolkit available to the computational science community. 

http://www.doi.org/10.62341/mhks7711
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2. Theoretical Foundations 
This section outlines the mathematical formulation of FIEs and the 

theoretical principles underlying the numerical methods under 

investigation. 

2.1. Fredholm Integral Equations: Definition and Classification 
The general linear Fredholm integral equation of the second kind is 

defined by: 

𝑢(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎

= 𝑓(𝑥),   𝑥 𝜖 [𝑎, 𝑏]                               (1) 

where: 

 u(x) is the unknown function to be determined, 

 K(x,t) is a known kernel function, assumed to be 

continuous in [a,b]×[a,b], 

 f(x) is a known forcing term, 

 λ is a scalar parameter. 

If the unknown function appears exclusively under the integral, the 

equation is classified as the first kind: 

∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎

= 𝑓(𝑥)                                                                     (2) 

This form is inherently ill-posed and is frequently encountered in 

inverse problems where one seeks to recover an internal 

property u(t) from indirect measurements f(x) [8, 16]. 

For problems involving nonlinearity, a Hammerstein-type equation 

is considered [17]: 

𝑢(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑔(𝑢(𝑡))𝑑𝑡
𝑏

𝑎
= 𝑓(𝑥)                                       (3) 

where g(⋅) is a nonlinear function, typically assumed to satisfy a 

Lipschitz condition. 

2.2. The Nyström Method with Quadrature Enhancement 
The Nyström method is a direct discretization technique that 

approximates the integral term using a numerical quadrature rule 

[10, 18]. Given a set of N nodes {ωj}
N

j=1  and corresponding weights                 

{tj}
N

j=1 from a rule such as Gaussian quadrature, the integral is 

discretized: 

∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎

≈ ∑ ω𝑗

𝑁

𝑗=1

𝐾(𝑥, 𝑡𝑗)𝑢(𝑡𝑗)                                         (4) 

Substituting this approximation into the second-kind FIE and 

enforcing the equation at the quadrature nodes xi=ti yields a system 

of linear algebraic equations: 
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𝑢𝑖 − 𝜆 ∑ ω𝑗

𝑁

𝑗=1

𝐾(𝑥𝑖, 𝑡𝑗)𝑢𝑗 =  𝑓(𝑥𝑖),     𝑖 = 1, … … . , 𝑁     (5) 

This can be written in matrix form as (I−λKW) u=f, where W is a 

diagonal matrix of weights. The accuracy of this method is directly 

tied to the precision of the underlying quadrature rule. This study 

implements an optimized Nyström method utilizing high-order 

spline Gaussian quadrature, which has been shown to offer superior 

convergence properties and stability for smooth kernels compared 

to traditional polynomial-based Gaussian rules [14, 19]. 

2.3. The Collocation Method with Wavelet Basis 
The Collocation method [20] is a projection technique where the 

solution is approximated within a finite-dimensional subspace 

{ϕk(x)}N
k=1 spanned by a set of basis functions  [11, 20]. The 

unknown function u(x) is expanded as: 

𝑢𝑁(𝑥) = ∑ 𝑎𝑘

𝑁

𝑘=1

𝜙𝑘(𝑥)                                                                          (6) 

The coefficients {ak} are determined by requiring that the integral 

equation is satisfied exactly at a set of collocation points {xi}
N

i=1. 

For the second-kind equation, this leads to: 

∑ 𝑎𝑘

𝑁

𝑘=1

[𝜙𝑘(𝑥𝑖)  − 𝜆 ∫ 𝐾(𝑥𝑖 , 𝑡)𝜙𝑘(𝑡)𝑑𝑡] =  𝑓(𝑥𝑖), 𝑖 = 1, . . , 𝑁  (7)
𝑏

𝑎

 

This constitutes a linear system Ca=f. The choice of basis functions 

is critical for efficiency and accuracy. While polynomial bases are 

common, this research employs Müntz-Legendre wavelets [15, 21]. 

Wavelets provide a multi-resolution analysis capability, allowing 

for efficient representation of functions with localized features, 

discontinuities, or singularities. The use of an operational matrix can 

further simplify the computation of the integral terms, reducing the 

cost of assembling the matrix C. 

2.4. The Picard Iteration Method 
The Picard method, or the method of successive approximations, is 

an iterative technique defined by the recurrence relation [12, 22]: 

𝑢𝑛+1(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑏

𝑎
                                          (8)     

Starting from an initial guess u0(x) (often u0(x)=f(x)), a sequence of 

functions {un(x)} is generated. The sequence converges to the true 

solution if the operator T[u]=f+λKu is a contraction on a suitable 

http://www.doi.org/10.62341/mhks7711
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Banach space (e.g. L2[a,b] or C[a,b]). A sufficient condition for 

convergence is ∣∣λ∣⋅∥K∥<1, where ∥K∥ is the norm of the integral 

operator. This method is particularly advantageous for weakly 

nonlinear FIEs of Hammerstein type, as it avoids the need to solve 

large, dense nonlinear algebraic systems that arise from the direct 

discretization of the Nyström or Collocation methods [17, 23]. Its 

simplicity and low computational overhead per iteration make it 

attractive for problems where the contraction mapping principle 

applies. 

2.5. Regularization of Ill-Posed Problems 
The discretization of a first-kind FIE, ∫K(x,t)u(t)dt=f(x), inevitably 

leads to a linear system Au=f where the matrix A is severely ill-

conditioned [8, 24]. The condition number κ(A) grows rapidly with 

the discretization size N, making the solution highly sensitive to 

noise in f. Tikhonov regularization is a cornerstone technique to 

restore stability [9, 25]. It replaces the original, unstable problem 

with a nearby, well-posed minimization problem: 

minu{∥Au-f∥22+α2∥Lu∥22}                                                                  (9) 

where α>0 is the regularization parameter and L is a regularization 

matrix (often the identity matrix, I, or a discrete differential operator 

to enforce smoothness). The solution is given by the regularized 

normal equations: 

 (ATA+α2LTL)u=ATf                                                                  (10) 

The choice of α is critical and can be determined using methods 

like the L-curve criterion [26], generalized cross-validation [27], or 

the discrepancy principle [9]. 

3. Methodology and Experimental Design 
A unified computational framework was established in MATLAB 

to ensure a fair and consistent comparison. The following 

benchmark problems were selected to probe different aspects of 

solver performance: 

3.1 Benchmark 1 (Smooth Linear Second Kind): 

𝑢(𝑥) − 0.5 ∫ (𝑥𝑡 + 1)𝑢(𝑡)𝑑𝑡
1

0

= 1 + 𝑥 +
5

6
𝑥 +

1

3
              (11) 

http://www.doi.org/10.62341/mhks7711
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Purpose: To test high-order convergence and raw accuracy for a 

well-posed problem with a known analytic solution. The smooth 

kernel allows for an assessment of the theoretical advantages of 

high-order quadrature and basis functions. 

 

3.2 Benchmark 2 (Ill-Posed First Kind): 

 

∫ 𝑒𝑥𝑡𝑢(𝑡)𝑑𝑡
1

0

=
𝑒𝑥 − 1

𝑥
                                                                         (12) 

where the exact solution is u∗(t)=1. This is tested with a noise-free 

right-hand side and with 1% additive Gaussian white noise to 

simulate measurement error. 

 

Purpose: To evaluate numerical stability, the growth of the 

condition number with increasing N, and the effectiveness of 

Tikhonov regularization in recovering a stable solution from noisy 

data. 

 

3.3 Benchmark 3 (Weakly Nonlinear Hammerstein): 

 

𝑢(𝑥) − 0.3 ∫ (𝑥 + 𝑡)𝑢2(𝑡)𝑑𝑡
1

0

= cos ( 𝜋 𝑥)                                      (13) 

Purpose: To assess the performance and convergence of the Picard 

iteration for a canonical nonlinear problem and to compare it against 

the Nyström and Collocation methods extended to nonlinear 

problems via Newton-type solvers. 

The following metrics were used for a multi-faceted evaluation: 

Accuracy: Quantified by the Root Mean Square Error:  

𝐸𝑅𝑀𝑆 = √
1

𝑀
∑ (𝑢∗(𝑥𝑖) −  𝑢𝑁(𝑥𝑖))2𝑀

𝑖=1                                             (14)      

 where M is a large number of test points. 

 Convergence Rate: The empirical order of 

convergence pp is estimated from the slope of the 

error log(ERMS) versus log(N). 

 Stability: Measured by the condition number κ2(A) of the 

system matrix for various N. A rapidly growing condition number 

indicates ill-posedness. 

http://www.doi.org/10.62341/mhks7711
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 Efficiency: Assessed via empirical runtime measurements 

on a standard platform and analysis of computational complexity 

(e.g., O(N3) for direct solvers of dense systems vs. O(kN2) for k 

iterations of the Picard method). 

 

4. Results and Discussion 

4.1. Convergence and Accuracy for a Second-Kind Equation 

Table 1: Convergence of ERMS for Benchmark 1 

Discretization(N) 
Nyström 

(Spline Gauss) 

Collocation 

(Wavelet) 

Picard Iteration 

(5 iter) 

8 5.82e-05 1.89e-04 1.05e-02 

16 3.91e-08 2.45e-06 1.04e-02 

32 6.05e-11 3.12e-08 1.04e-02 

64 < 1.0e-12 3.91e-10 1.04e-02 

The results in Table 1 unequivocally demonstrate the superior 

convergence of the optimized Nyström method. The use of spline 

Gaussian quadrature facilitates exponential (spectral) convergence, 

allowing it to achieve machine precision with a moderate number of 

nodes, corroborating the findings in [14]. The wavelet-based 

Collocation method also exhibits high-order convergence but at a 

slightly slower rate, which may be attributed to the computational 

overhead of evaluating the wavelet integrals, despite the advantages 

highlighted in [15, 21]. The Picard iteration, as expected, converges 

rapidly to its fixed point within the first few iterations, but the error 

stagnates because it is dominated by the truncation of the infinite 

Liouville-Neumann series, not the discretization error. This 

confirms the theoretical prediction that Picard iteration, while 

simple, is not competitive for linear problems where direct 

discretization methods are applicable and can achieve much higher 

accuracy [12, 22]. 
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4.2. Stability and Regularization for a First-Kind Equation 

Table 2: Condition Number and Regularization Performance for 

Benchmark 2 (with 1% Noise) 

N 
κ2

(A) 
ERMS (No Reg.) 

Optimal

 α 
ERMS (With Reg.) 

16 
2.5e+

03 
8.41e-01 1e-04 1.52e-01 

32 
1.8e+

06 
2.15e+00 1e-03 2.89e-01 

64 
4.2e+

11 
5.77e+01 1e-02 4.11e-01 

Table 2 unequivocally confirms the severe ill-posedness of the first-

kind equation, with the condition number growing exponentially 

with N, a hallmark of such problems as described in [8, 24]. The 

unregularized solution is completely dominated by noise and is 

useless for N≥32. The application of Tikhonov regularization is 

essential to recover a meaningful solution, as prescribed in [9, 25]. 

It is observed that while the error of the regularized solution 

increases with N (a phenomenon explained by the discrepancy 

principle, as a finer discretization captures more high-frequency 

noise), it remains bounded and physically plausible. This highlights 

a critical trade-off inherent in ill-posed problems: numerical 

stability must be prioritized over the theoretical accuracy achievable 

with finer discretizations. The discretization level N and the 

regularization parameter αα must be chosen in concert, not 

independently. 

4.3. Performance on Weakly Nonlinear Problems 
Table 3: Performance on Hammerstein Equation (Benchmark 3) 

Method N ERMS Runtime (s) 

Picard Iteration - 4.88e-04 0.15 

Nyström + Newton 32 2.15e-06 0.45 

Collocation + Newton 32 5.21e-06 0.62 

http://www.doi.org/10.62341/mhks7711
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For this weakly nonlinear problem, the Picard iteration 

demonstrates its distinct advantage, as analyzed in [17, 23]. It 

converges reliably to a good approximation with very low 

computational cost, as it avoids assembling and solving a large 

nonlinear system. The Nyström and Collocation methods, when 

coupled with Newton's method, achieve higher accuracy but at a 

significantly greater computational expense. This is due to 

the O(N3) cost of solving the linear systems within each Newton 

iteration. This result strongly suggests that for weakly nonlinear 

problems where extreme precision is not the primary goal, the 

Picard method offers an excellent balance of efficiency, robustness, 

and simplicity of implementation. 

5. Conclusion 
This study has provided a systematic and comprehensive 

comparative analysis of three principal numerical methods for 

solving Fredholm Integral Equations. By implementing modern 

enhancements—spline quadrature for Nyström, wavelet bases for 

Collocation, and a focused analysis of Picard iteration—and 

evaluating their performance across a carefully chosen suite of 

benchmark problems, clear and practical guidelines have been 

established. 

The key findings and recommendations are as follows: 

1. For linear Fredholm equations of the second kind with 

smooth kernels, the Nyström method enhanced with high-

order quadrature (e.g., spline Gauss) is the unequivocal 

champion. Its spectral convergence property, as evidenced in 

Benchmark 1, allows it to achieve high accuracy with relatively 

few discretization points, making it both highly accurate and 

computationally efficient for this class of problems. 

2. For ill-posed first-kind equations, the primary concern shifts 

from accuracy to numerical stability. As demonstrated in 

Benchmark 2, both the Nyström and Collocation methods 

produce severely ill-conditioned systems. The successful 

application of Tikhonov regularization is mandatory to obtain 

a stable, physically meaningful solution. In this context, the 

choice between Nyström and Collocation is less critical than the 

careful and often problem-dependent selection of the 

regularization parameter α. 

3. For weakly nonlinear Hammerstein-type 

equations, the Picard iterative method is highly 

recommended. Its simplicity, low computational cost, and 

http://www.doi.org/10.62341/mhks7711
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reliable convergence under standard contractive conditions, as 

shown in Benchmark 3, make it an ideal choice, particularly for 

applications where a solution of moderate accuracy is sufficient 

and the overhead of a nonlinear solver is undesirable. 

In summary, the optimal numerical strategy for an FIE is not 

universal but is dictated by the equation's type (first/second kind), 

the smoothness of its kernel, and the presence of nonlinearity. This 

research provides a clear, empirically-supported decision-making 

framework for practitioners facing these computational challenges. 

Furthermore, this work establishes a robust baseline of performance 

for classical methods, against which emerging techniques, such as 

neural operators or other machine learning-based solvers [28, 29], 

can be rigorously evaluated in the future. 
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